🌱 ¿Qué son los conjuntos numéricos?
Son grupos de números que comparten ciertas características. Se ordenan como una especie de “familia”: cada conjunto incluye al anterior, pero agrega números nuevos.
Imagínate una matrioska (muñecas rusas): dentro de una está la otra. Así funcionan los conjuntos numéricos.
🔹 1. Números Naturales (ℕ)
- Son los primeros números que aprendemos al contar.
- Ejemplos: 1, 2, 3, 4, 5, …
- Usamos los naturales para contar cosas: manzanas, personas, días.
👉 A veces se incluye el 0 en los naturales, dependiendo del país o del libro.
🔹 2. Números Enteros (ℤ)
- Los enteros incluyen a los naturales, el 0 y también los números negativos.
- Ejemplos: …, -3, -2, -1, 0, 1, 2, 3, …
- Sirven para representar deudas, temperaturas bajo cero, pérdidas o ganancias.
🔹 3. Números Racionales (ℚ)
- Son las fracciones y decimales exactos o periódicos.
- Ejemplos: ½ = 0,5; ¾ = 0,75; 2/3 = 0,666…
- Incluyen a los enteros (porque un número como 3 puede escribirse como 3/1).
👉 Sirven para partir algo en partes iguales: una pizza, un pastel, un terreno.
🔹 4. Números Irracionales
- Son los números que no pueden escribirse como fracción exacta.
- Sus decimales son infinitos y no se repiten de manera periódica.
- Ejemplos:
- π (3,14159…)
- √2 (1,414213…)
- e (2,71828…)
👉 Están en la naturaleza: circunferencias, diagonales, crecimiento exponencial.
🔹 5. Números Reales (ℝ)
- Son la unión de los racionales y los irracionales.
- Es el conjunto más grande que usamos en la vida cotidiana.
- Ejemplos: -5, 0, 1, ½, 3,1416, √2.
👉 Los reales son todos los números que podemos marcar en la recta numérica.
🔹 6. (Un paso más allá) Números Complejos (ℂ)
- Incluyen todos los reales y agregan los números que usan la unidad imaginaria i, donde i² = -1.
- Ejemplos: 3 + 2i, -1 – 4i.
👉 Se usan en ingeniería, electrónica y física, aunque en el colegio muchas veces no se ven.
🎨 Resumen visual
- Naturales (contar).
- Enteros (ganancias y deudas).
- Racionales (fracciones y decimales exactos o periódicos).
- Irracionales (decimales infinitos no periódicos).
- Reales (racionales + irracionales).
- Complejos (reales + imaginarios).
